skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Price, P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The M81 galaxy group is surrounded by an HI debris field scattered by the tidal interactions of its galaxies, a situation that has obvious similarities to the Magellanic stream and illuminates the formation of in-situ stars in stellar halos during galaxy collisions. Using observations of stars across the M81 group from the Subaru Hyper Suprime-Cam, and observations of the neutral HI from the Very Large Array, we find that within this HI debris the density of young stars broadly correlates with the density of gas, as expected given the Schmidt-Kennicutt star formation law and the results of previous work. Yet, there are regions that have systematically different behaviors in distributions of stars and gas. We focus on two stretches of HI coming off NGC 3077: the Southern tidal bridge (between M81 and NGC 3077) and the Northern tidal bridge (from NGC 3077 in the direction of M82). The Southern bridge has a narrow strip of young stars down its center, and the Northern bridge is mostly devoid of stars. While the driver(s) for this kind of behavior remain uncertain, our analysis of star formation in galaxy group-scale mergers from the TNG50 hydrodynamical galaxy simulations shows that the differences between projected line-of-sight distances of the gas may be an important consideration. 
    more » « less
  2. The arrival directions of astrophysical neutrinos indicate point source neutrino emission from NGC 1068. 
    more » « less
  3. Abstract We present a measurement of the high-energy astrophysical muon–neutrino flux with the IceCube Neutrino Observatory. The measurement uses a high-purity selection of 650k neutrino-induced muon tracks from the northern celestial hemisphere, corresponding to 9.5 yr of experimental data. With respect to previous publications, the measurement is improved by the increased size of the event sample and the extended model testing beyond simple power-law hypotheses. An updated treatment of systematic uncertainties and atmospheric background fluxes has been implemented based on recent models. The best-fit single power-law parameterization for the astrophysical energy spectrum results in a normalization of ϕ @ 100 TeV ν μ + ν ¯ μ = 1.44 − 0.26 + 0.25 × 10 − 18 GeV − 1 cm − 2 s − 1 sr − 1 and a spectral index γ SPL = 2.37 − 0.09 + 0.09 , constrained in the energy range from 15 TeV to 5 PeV. The model tests include a single power law with a spectral cutoff at high energies, a log-parabola model, several source-class-specific flux predictions from the literature, and a model-independent spectral unfolding. The data are consistent with a single power-law hypothesis, however, spectra with softening above one PeV are statistically more favorable at a two-sigma level. 
    more » « less